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Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction

of paramagnetic centres with nuclear spins. This process is most likely to occur

near paramagnetic centres at an angle close to 45� with respect to the direction

of the external magnetic field. The resulting distribution of polarized nuclear

spins leads to an anisotropy of the polarized neutron scattering pattern, even

with randomly oriented radical molecules. The corresponding cross section of

polarized coherent neutron scattering in terms of a multipole expansion is

derived for radical molecules in solution. An application using data of time-

resolved polarized neutron scattering from an organic chromium(V) molecule

is tested.

1. Introduction

In a simple microscopic picture of dynamic nuclear spin

polarization (DNP), the nuclear spin polarization develops

near paramagnetic centres through the electron–nuclear

dipolar interaction decreasing with the third power of the

distance between electron and nuclear moments. More distant

bulk nuclei are polarized by dipolar interaction between

nuclei (spin diffusion). The same mechanism in reverse order

is responsible for nuclear relaxation in most insulating solids.

In the frame of the solid effect (resolved or not) (Abragam

& Goldman, 1978, 1982), the direct polarization of nuclear

spins near paramagnetic centres is proportional to

Wsolid effect /
sin � cos �

r3

� �2

: ð1Þ

From (1), it is clear that the direct polarization is a short-range

effect which decreases rapidly with the distance r from the

paramagnetic centre. Moreover, this effect is most

pronounced at an angle of � = 45� with respect to the direction

of the external magnetic field B (Fig. 1).

To illustrate the probability of direct polarization, we refer

to a chromium(V) complex, the sodium salt of bis(2-hydroxy-

2-ethylbutyrato)oxochromate, Na+ .(C12H20CrO7)�, abbre-

viated as EHBA-CrV (Krumpolc & Rožek, 1979). The wave-

function of its unpaired electron extends to a certain degree

over the C atoms neighbouring the O atoms which surround

the central Cr atom as is indicated by the dotted red lines in

Fig. 1 (Wenckebach, 1980). The molecular structure shown in

Fig. 1 has been given an orientation that is favourable for the

polarization of its protons by the solid effect.

In a second step, the polarization of the nuclear spins will

propagate to more distant nuclei by the interaction between

nuclear spins. The probability of nuclear polarization by flip-

flop is proportional to

Wflip-flop /
3 cos2 � � 1

r3

� �2

: ð2Þ

Figure 1
The probability W of the solid effect on proton spins of the EHBA-CrV

molecule as described by equation (1). The interaction of the protons and
the paramagnetic centre is that of separated point dipoles. The
wavefunction of the unpaired electron extends to a certain degree over
the C atoms (dotted lines). The oblique position of the EHBA-CrV

molecule is favourable to the polarization of most of its protons by the
solid effect.



Similar to the probability of the solid effect, the probability of

flip-flop decreases rapidly with the distance between two

nuclear spins. Contrary to what we have seen with the direct

polarization, the propagation of the nuclear spin polarization

proceeds preferentially along the direction of the external

magnetic field and in the plane orthogonal to it.

Nuclear spin diffusion proceeds faster in regions with small

magnetic field gradients, i.e. far away from paramagnetic

centres. This is no longer the case for nuclear spins close to a

paramagnetic centre, the so-called ‘close nuclei’. The local

magnetic field leads to a change of the Larmor frequency of

each of the close nuclei which depends on their distance r from

the paramagnetic centre and the angle � with respect to the

direction of the much stronger external magnetic field. In fact,

the NMR profile of EHBA-CrV in a deuterated solvent

consists of a broad peak due to close protons with relatively

large deviations of their Larmor frequencies and a sharp peak

due to protons with nearly equal Larmor frequencies (Fig. 2)

(Niinikoski, 1980).

As the broad peak of NMR from EHBA-CrV is asymmetric,

the interaction of these protons and the paramagnetic

chromium cannot be entirely that of separated point dipoles

(Cox, 1980).

The interplay between electron-spin–nuclear-spin interac-

tion as given by (1) and the nuclear-spin diffusion as described

by (2) will decide on the spatial distribution of polarized

nuclear spins close to paramagnetic centres.

Polarized neutron scattering is the method of choice to

observe the build-up of proton polarization in space and time.

Previous experiments on time-resolved neutron scattering

from dynamically polarized protons of EHBA-CrV confirmed

the special role of close protons. These experiments showed

for the first time that the protons of EHBA-CrV are polarized

to 20% within a second, whereas those of the deuterated

solvent giving rise to a narrow peak of NMR (Fig. 2) were

polarized much more slowly (van den Brandt et al., 2002, 2003,

2006).

In the next step, a method will be presented which focuses

on the interaction of the electron spin with the spins of the

close protons. The non-spherical distribution of polarized

protons near paramagnetic centres as predicted by (1) is

expected to be imaged by the neutron scattering profile. In this

paper, we give an estimate of the influence of direct polari-

zation on the polarized neutron scattering intensity from

radical molecules in solution.

2. The mathematical formalism

The scattering intensity I(Q) of randomly oriented molecules

in dilute solution is obtained as an average of intensities of

coherent scattering,

IðQÞ ¼
R2�
�¼0

R�
�¼0

R2�
�¼0

jAðQ; �; �; �Þj2 d� sin � d� d�: ð3Þ

Q is the scattering vector and Q = |Q| = (4�/�) sin # is its

modulus (Fig. 3). 2# is the scattering angle and � is the

wavelength. AðQ; �; �; �Þ is the scattering amplitude of the

dissolved molecule after rotation by the Eulerian angles

�, �, �.

AðQ; �; �; �Þ ¼
R
v

�ðQ; �; �; �Þ expðiQ � rÞ dv: ð4Þ
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Figure 2
Proton NMR of EHBA-CrV dissolved in perdeuterated butanol (98%
deuteration) and 5% by weight of heavy water. The narrow peak is
interpreted as arising from the 2% of unsubstituted protons of the
solvent. The broad line most likely comes from the protons belonging to
the paramagnetic molecules dispersed rather uniformly in the solvent
matrix (from Niinikoski, 1980). Copyright CERN.

Figure 3
Scattering geometry. The scattering vector Q is the difference between
the wavevector k1 and the wavevector k0 of the incident beam. The
direction of the magnetic field B is shown to be along the direction z of
the primary beam.



r is a vector in real space. �ðr; �; �; �Þ is the scattering density

of the dissolved molecule after rotation by ð�; �; �Þ. The

integration is performed over the molecular volume v.

In the presence of proton spins polarized by the solid effect,

the average of the intensity given in (3) has to take into

account the directional property of W in (1). It is therefore

convenient to distinguish between the scattering density

created by direct polarization and the scattering density which

does not show directional properties, like those defined in (1).

The scattering amplitude due to direct polarization is

BðQ; �; �; �Þ ¼
P

j

Wjð�; �; �Þ exp½iQ � rjð�; �; �Þ�: ð5Þ

After rotation by ð�; �; �Þ, the jth close proton at rj = ðxj; yj; zjÞ

finds itself at rjð�; �; �Þ = r0j = ðx0j; y0j; z0j) and its probability

Wj / ðsin �j cos �jÞ
2 of direct polarization will change to

Wj / ðsin �0j cos �0jÞ
2, where cos �0j = z0j=rj. Here it has been

assumed that the magnetic field direction coincides with the

direction of the neutron beam.

If the direction of the magnetic field deviates from that

of the neutron beam by an angle " (Fig. 4), the probability

of direct polarization of the jth proton has to be taken

from Wj rotated by ", i.e. by Wjð�; �; �; "Þ. The scattering

intensity I(Q) is obtained by inserting the sum

AðQ; �; �; �Þ þ BðQ; �; �; �; "Þ in (3).

Both the expression for W and the integration over all

orientations (�,�,�) of the dissolved molecule suggest the use

of polar coordinates and, more specifically, the development

of the structure and of its amplitude as a series of spherical

harmonics (x2.2). Before we enter into the general mathe-

matical formalism, the origin of the asymmetry of the intensity

distribution will be shown with a simpler case study.

2.1. An approximation for small """

There are two reasons to discuss the expected asymmetry of

polarized neutron scattering at small angles " between the

direction of the magnetic field and that of the neuron beam:

firstly, this case is encountered with our experiments of time-

resolved polarized neutron scattering from dynamically

polarized proton spins (van de Brandt et al., 2002, 2006) and,

secondly, the asymmetry of polarized neutron scattering is

described in relatively simple terms.

Two assumptions are made for an estimation of polarized

neutron scattering from dynamically polarized protons of the

EHBA-CrV molecule.

First, the protons of the ethyl groups at the two extremes of

the molecule (Fig. 1) are represented by their centres of mass.

For such a dumbbell object, the scattering amplitude (5) is

written as

BðQ; �; �; �; "Þ ¼
P2

j¼1

Wjð�; �; �; "Þ expðiQ � rjÞð�; �; �Þ: ð6Þ

On rotation by the Eulerian angles (�,�,�), the centre of mass

of the protons at r1 and r2 = �r1 of the EHBA-CrV molecule

will be on a sphere with a radius r = |r1| = |r2|.
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Figure 4
Scattering geometry. The direction of the neutron beam coincides with z.
The direction of the external magnetic field (B) at the sample (S) differs
from that of the neutron beam by ". Right: the projection of the scattering
vector (see Fig. 3) on the detector plane. The intensity of neutron
scattering on the area detector (D) appears as a function of Q and �.

Figure 5
The spatial distribution of dumbbells [darker or lighter green spheres on
dotted orange (blue) line], the orientations of which lie on the surface of a
double cone with an opening angle of � = �45�. The direction of the
magnetic field B (= axis of double cone) differs from that of the neutron
beam (z axis) by " = 7� (upper part). The two circles (dotted blue and
orange) present the projection of the positions of the dumbbells (lower
part).



The second assumption concerns the probability W of the

electron-spin–proton-spin interaction, which will be restricted

to the surface of a double cone with a total opening angle of

90�, i.e. to � = 45� in (1). The axis of the double cone is that of

the direction of the magnetic field at the sample. Dynamic

proton spin polarization then takes place at the intersection of

the double cone with the sphere of radius r, i.e. on two circles

with the radius R centred at z = R and z = �R, respectively

(Fig. 5). For a magnetic field direction coinciding with that of

the neutron beam, the two circles in the lower part of Fig. 5

would be indistinguishable.

As the direction of the magnetic field at the sample deviates

from that of the neutron beam by ", the two circles become

displaced with respect to each other by 2d = 2R" in the

horizontal x direction (Fig. 5). The projection of the spatial

distribution of the sites of DNP on the xy plane is asymmetric.

Hence, an asymmetric profile of the intensity of polarized

neutron small-angle scattering is expected. The width of the

profile of small-angle scattering will be slightly narrower in the

horizontal x direction. Using the Guinier approximation (see

Appendix A), the difference between the intensities in hori-

zontal and vertical directions is

�IðQÞ ¼ IðQÞhorizontal � IðQÞvertical

¼ exp
�Q2ðR2 þ d2Þ

2
þ exp

�Q2ðR2 � d2Þ

2

�

�2 exp
Q2R2

2

�
exp

Q2R2
g

6
: ð7Þ

As the amplitude of dynamically polarized protons is usually

much smaller than the amplitude of the atoms which are not

subject to direct polarization [represented by 1= expðQ2R2
g=6Þ],

the dominant cross term is given (see Appendix A). The

variation of the intensity difference �I(Q) with Q is shown in

Fig. 12. The variation of the scattering intensity with the

azimuth angle � (Fig. 4) may be more complicated once larger

" and scattering angles 2# are admitted. A detailed analysis of

the intensity at constant Q as a function of � then is manda-

tory.

2.2. Multipole expansion

The scattering amplitude A(Q) is developed as a series of

spherical harmonics Yl,m and spherical Bessel functions jl [see

equation (40)]:

AðQÞ ¼
P

j

bj expðiQ � rjÞ

¼
P1
l¼0

Pl

m¼�l

Al;mðQÞYl;mð�Þ ð8Þ

with

Al;mðQÞ ¼ ðiÞ
l P

j

bj jlðQrjÞY
�
l;mð!jÞ: ð9Þ

The components of the scattering factor Q in polar coordi-

nates are Q, �, where � is a unit vector in the Fourier space

(Fig. 3). The components of � giving rise to elastic coherent

scattering are � ¼ 90� þ #; � (Figs. 3, 4). The position of the

jth atom of the molecule is given by the polar coordinates

rj, �j, ’j or rj, !j, where !j is its unit vector in real space.

The multipole expansion of the scattering amplitude A(Q)

provides an easy way to calculate the scattering function I(Q)

of randomly oriented particles in solution.

IðQÞ ¼
R
jAðQÞj2 d� /

P1
l¼0

Pl

m¼�l

jAl;mðQÞj
2: ð10Þ

This formula not only gives an easy access to the symmetry of

isomeric viruses (Finch & Holmes, 1967) but it also provides

the set of structures giving rise to the same scattering function

I(Q) (Stuhrmann, 1970).

The electron-spin–proton-spin interaction will lead to a

polarization of the protons close to the paramagnetic centres

as is described by (1) (Fig. 1). Substituting the scattering

length bj in (9) by the probability Wj as defined by (1), one

obtains

BðQ; �; �; �; "Þ

¼
P1
l¼0

ðiÞ
l Pl

m¼�l

P
j

Wjð�; �; �; "ÞjlðQrjÞY
�
l;mð!

0
jÞYl;mð�Þ

�
P1
l¼0

Pl

m¼�l

Bl;mðQ; �; �; �; "ÞYl;mð�Þ; ð11Þ

where !0j is the unit vector pointing to the jth atom after

rotation by �, �, �. The averaged scattering intensity from

polarized protons near paramagnetic centres is then

IBBðQ; "Þ ¼
R2�
�¼0

R�
�¼0

R2�
�¼0

jBðQ; �; �; �; "Þj2 d� sin � d� d�:

ð12Þ

There are various ways to calculate the integrand in (12) and

to perform the integration. All of them result in an expansion

of the scattered intensity in terms of spherical harmonics with

both l and m being even.

IBBðQ; "Þ ¼
P1
l¼0

Pl

m¼�l

Il;mðQ; "ÞYl;mð�Þ: ð13Þ

Owing to the presence of Il,m(Q) with l> 0 and jmj> 0, the

scattering intensity IBBðQ; "Þ will be non-spherical.

2.2.1. Numerical integration. In a first step, the atomic

coordinates (xj, yj, zj) of the jth proton of the solute molecule

are rotated by the Eulerian angles (�, �, �). The amplitude is

calculated from the rotated coordinates ðx0j; y0j; z0jÞ by using (9).

In a second step, the atoms at ðx0j; y0j; z0jÞ are rotated by ". The

probability of direct polarization W is obtained from the

coordinates ðx00j ; y00j ; z00j Þ, which have been rotated by ".

Wjð�; �; �; "Þ ¼
z00j

rj

� �2

1�
z00j

rj

� �2

: ð14Þ

The variation of W in (1) with the distance r of different close

protons from the paramagnetic centre is neglected. Such an

approximation may hold for relatively small organic radicals,

like the EHBA-CrV molecule, where the H atoms are at

distances between 3 and 5 Å from the central Cr atom (Fig. 1).
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The expression of intensity jBðQ; �; �; �; "Þj2 in (12)

contains products of spherical harmonics that are reduced to

sums of these by using (42) and (43).

Bl1;m1
ðQ; . . .ÞB�l2;m2

ðQ; . . .ÞYl1;m1
ð�ÞY�l2;m2

ð�Þ

¼
Xl1þl2

l¼jl1�l2j

Xl

m¼�l

ð�1Þmþm2
ð2l1 þ 1Þð2l2 þ 1Þð2l þ 1Þ

4�

� �1=2

	
l1 l2 l

0 0 0

� �
l1 l2 l

m1 �m2 m

� �

	 Bl1;m1
ðQ; . . .ÞB�l2;m2

ðQ; . . .ÞYl;�mð�Þ

) Sl;�mðQ; �; �; �; "ÞYl;�mð�Þ: ð15Þ

The arrow in (15) means ‘contributes to’. The integration over

all orientations of the structure results in an anisotropic

distribution of the scattering intensity:

IBBðQ; "Þ ¼
P1
l¼0

Pl

m¼�l

Yl;mð�Þ

	
R2�
�¼0

R�
�¼0

R2�
�¼0

Sl;mðQ; �; �; �; "Þ d� sin � d� d�

¼
P1
l¼0

Pl

m¼�l

Il;mðQ; "ÞYl;mð�Þ: ð16Þ

2.2.2. The analytical expression. There is a way to avoid the

numerical integration in (16) by using mathematical tools

which have proven to be useful in quantum mechanics of

angular momentum. Some of the relevant formula are given in

Appendix C.

The analytical expression is derived in Appendix B. Here

we just give a brief outline.

The angular part of the probability function W in (1) is

expressed by spherical harmonics.

Wð�Þ ¼ jY2;1ð�; ’Þj
2
¼

P
k¼0;2;4

CkYk;0ð�Þ: ð17Þ

The coefficients Ck are obtained by using (42) and (43): C0 =

0.47266, C2 = 0.15098, C4 = �0.27009.

The amplitude B(Q, �, �, �) in (11) is now completely

described by expansions as series of spherical harmonics.

The rotation of the spherical harmonics by (�, �, �)

Y�l;mð!
0
jÞ ¼

Pl

m0¼�l

Rl;m0;mð�; �; �ÞY
�
l;m0 ð!jÞ ð18Þ

enters the matrix elements Rl,m0,m(�, �, �). Their orthogonality

relation

1

8�2

Z2�

�¼0

Z�

�¼0

Z2�

�¼0

Rl1;m
0
1
;m1
ð�; �; �ÞR�l2;m02;m2

ð�; �; �Þ d� sin� d� d�

¼
1

2l þ 1
	l1;l2

	m0
1
;m0

2
	m1;m2

ð19Þ

provides an elegant solution of the integral in (12).

IBBðQ; "Þ

¼
X1
l1¼0

X1
l2¼0

i l1 ð�iÞ
l2
Xl1þl2

l¼jl1�l2j

Xl

m¼�l

Xl1

m1¼�l1

Xl2

m2¼�l2

ð�1Þmþm2

	
ð2l1 þ 1Þð2l2 þ 1Þð2l þ 1Þ

4�

� �1=2 l1 l2 l

m1 �m2 m

� �

	
l1 l2 l

0 0 0

� � X
k1¼0;2;4

X
k2¼0;2;4

4�Ck1
Ck2

½ð2k1 þ 1Þð2k2 þ 1Þ�1=2

	
Xk1

n1¼�k1

Xk2

n2¼�k2

Y�k1;n1
ð"2; "1ÞYk2;n2

ð"2; "1Þ
X



ð2
þ 1Þ

	
Xk1

n0
1
¼�k1

Xk2

n0
2
¼�k2

Xl1

m0
1
¼�l1

Xl2

m0
2
¼�l2

l1 k1 


m01 n01 p

� �
l1 k1 


m1 n1 q

� �

	
l2 k2 


m02 n02 p

� �
l2 k2 


m2 n2 q

� �

	
X

j1

X
j2

Y�k1;n
0
1
ð!j1
ÞYk2;n

0
2
ð!j2
Þjl1
ðQrj1
Þjl2
ðQrj2
ÞY�l1;m01

ð!j1
Þ

	 Yl2;m
0
2
ð!j2
ÞYl;�mð�Þ: ð20Þ

For 
 two conditions hold: |l1 � k1| 
 
 
 l1 + k1 and |l2 � k2|


 
 
l2 + k2.

In many applications, the cross term

IABðQ; "Þ ¼
R2�
�¼0

R�
�¼0

R2�
�¼0

d� sin � d� d�

	 Re AðQ; �; �; �ÞB�ðQ; �; �; �; "Þ
� �

ð21Þ

may be more important than the term depending on the

amplitude of the polarized spins only, a point which is

addressed in (31). One way to obtain the cross term IAB(Q, ")
from (20) is to restrict the sum over k1 (or k2) to its first

member.
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Figure 6
The radial functions Il,m(Q, ") of the intensity of polarized neutron
scattering from a clover-leaf distribution of polarized protons near the
paramagnetic centres of EHBA-CrV. At " = 0, components with m 6¼ 0
vanish. The functions are normalized to I0,0(0) = 1.



3. Results and discussion

As already mentioned in the Introduction, EHBA-CrV

dissolved in a mixture of deuterated glycerol and D2O has

been chosen to illustrate the anisotropy of polarized neutron

scattering from dynamically polarized proton spins. The

following calculation is based on the assumption that the

clover-leaf distribution of the proton polarization near the

paramagnetic centre shown in Fig. 1 is maintained to a good

extent for some time, typically for 1 s, after the onset of DNP.

Within this time, the propagation of nuclear polarization by

dipolar interaction between nuclear spins is assumed to be

negligible. The corresponding functions Il,m(Q, ") as defined

by (16) are shown in Fig. 6 for various angles ".
The intensity (16) involves the multiplication of the radial

functions Il,m(Q, ") with the corresponding Yl,m(�). Fig. 7

shows I(Q, "= 90�) diminished by the average intensity

I(Q, "= 90�), i.e. the multipoles of I(Q, "= 90�) with |m| > 0. It

is this kind of intensity pattern that one would expect to see on

an area counter after subtraction of the spherical average

intensity.

Fig. 8 shows the same I(Q, ") for some Q and " as a function

of the angle � (for � see Fig. 4). There is no variation of the

intensity for " = 0, i.e. when the direction of the magnetic field

at the sample coincides with the direction of the neutron

beam. The variation of the intensity with � increases with ",
and for larger Q the contribution of higher multipoles (l � 4)

is more pronounced.

In the next step, we assume that there is an important

interaction between nuclear spins leading to a uniform

polarization of the protons of the EHBA-CrV molecule in a

very short time. The variation of the intensity with � shown in

Fig. 9 then is somewhat weaker than that we have seen before.

As there are hardly any protons in the deuterated solvent, the

dipolar interaction between protons as described by (2) is

restricted to those of the EHBA-CrV molecule. It is the spatial

arrangement of the protons in two domains, like a dumb bell,

which leads to a selection of the EHBA-CrV molecules for

DNP according to their orientation with respect to the

direction of the external magnetic field (Fig. 1). The scattering

intensity I(Q, " = 0) differs from I(Q) using the Debye equa-

tion of X-ray scattering from gas molecules, denoted by D in

Figs. 8 and 9.
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Figure 7
The asymmetric intensity distribution on the area detector. The magnetic
field direction is orthogonal to the direction of the neutron beam (" =
90�). The multipole components that do not give rise to a variation of the
intensity with �, i.e. those with m = 0, have been removed.

Figure 8
The variation of the scattering intensity IBB(Q, ") from the 20 protons of
EHBA-CrV with the azimuth � in the detector plane at various Q (Å�1)
and various angles " in the absence of dipolar interaction between proton
spins. The left column (black bars, denoted by D) presents the scattering
of the 20 protons of EHBA-CrV using (10).

Figure 9
The variation of the scattering intensity IBB(Q, ") from the 20 protons of
EHBA-CrV with the azimuth � in the detector plane at various Q (Å�1)
and various angles ". There is dipolar interaction between proton spins
leading to a uniform polarization of the 20 protons of the molecule. The
left column (black bars, denoted by D) presents the scattering of the 20
protons of EHBA-CrV using (10).



So far, the calculation of the intensity started from the H

atoms of the EHBA-CrV molecule only. Including the non-H

atoms of the EHBA-CrV molecule and taking into account its

contrast in a deuterated solvent, the resulting amplitude A(Q)

is much larger than that of the polarized protons. The polar-

ization-dependent intensity is largely due to the cross terms

IAB(Q, ") as defined by (21). Figs. 10 and 11 show the cross

term of the intensity without and with dipolar interaction

between proton spins, respectively. The variation of the

intensity with � is slightly smaller than with the corresponding

scattering functions with protons only. Even with a very

frequent dipolar interaction between proton spins leading to

an average polarization among the 20 protons of an EHBA-

CrV molecule, the asymmetry of the intensity distribution is

strong enough to be measurable at reasonably large " (Fig. 11).

The experiments of time-resolved polarized neutron scat-

tering from EHBA-CrV at the instrument D22 of the Institut

Laue–Langevin (ILL), Grenoble, France, happened to be

performed with " = 7� in the horizontal plane (van den Brandt

et al., 2002). As the EHBA-CrV molecule with a radius of

gyration Rg = 3.5 Å is a relatively small molecule, a large Q

range was required to measure the central peak of polarized

neutron scattering. The detector was moved to an asymmetric

position and the axis of the solenoid was tilted by " = 7�

(Fig. 4).

The expected variation of the intensity with � is then very

small, less than 0.001 of the polarization-dependent intensity

at Q = 0 (Fig. 12). As the direction of DNP was inverted each

10 s, the change of the asymmetry during one cycle of positive

and negative DNP could be extracted from many hundreds of

sequences of 200 pictures with a remarkably good accuracy of

about �0.1%. The experimental result given as the difference

between the intensity in the horizontal direction and that of

the vertical direction on the area detector agrees with the

calculated scattering curves within the statistical error (Fig.

12). The accuracy of the experimental data is not good enough

to discriminate between different models. For instance, it

cannot be decided whether the dipolar interaction between

proton spins leads to a uniform polarization of the protons in

each molecule.

4. Conclusions

The clover-leaf-like probability function (1) of electron-spin–

proton-spin interaction or direct nuclear polarization is the

origin of a non-spherical distribution of the intensity of

polarized neutron scattering from radical molecules in
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Figure 12
The asymmetry of neutron scattering from directly polarized protons of
EHBA-CrV. Experimental data are given by circles. The open circles
result from a tentative shift of the origin of the primary beam by 3 mm in
either the left or the right direction on the area counter (Fig. 4).
Corresponding calculated scattering of the EHBA-CrV model: without
dipolar interaction between polarized protons (blue), with dipolar
interaction between protons (red), Guinier approximation (green)
[equation (31)].

Figure 10
The variation of the scattering intensity IAB(Q, ") of EHBA-CrV with the
azimuth � in the detector plane at various Q (Å�1) and various angles " in
the absence of dipolar interaction between proton spins.

Figure 11
The variation of the scattering intensity IAB(Q, ") with the azimuth � in
the detector plane at various Q (Å�1) and various angles " with important
dipolar interaction between proton spins leading to a uniform polariza-
tion of the 20 protons in each EHBA-CrV molecule.



solution. This type of scattering pattern is even enhanced

when the probability function of direct polarization selects

almost rod-like molecules according to their orientation in

solution with respect to the direction of an external magnetic

field, as is the case for the EHBA-CrV molecule. An eventually

important dipolar interaction between protons close to the

paramagnetic centre then decreases the variation of the

intensity of polarized neutron scattering at constant Q to some

extent, in particular at higher structural resolution, i.e. at

higher Q.

The experimental data, which were obtained with a rather

small " of only 7�, indicate a variation of the intensity of less

than 0.1%, in agreement with the calculated functions but too

small to discriminate between different models.

A much larger variation of the intensity at constant Q is

expected with an increased ". A more appropriate choice of an

angle, say " = 40�, which is perfectly feasible with the polarized

target facility of the Paul-Scherrer-Institut (van den Brandt et

al., 2002), would reveal a more detailed microscopic picture of

the electron-spin–proton-spin interaction and of the dipolar

interaction between proton spins. From the variation of the

intensity of polarized neutron scattering with the angle � as a

function of Q, the range of direct polarization and the tran-

sition to nuclear spin diffusion can be obtained. The influence

of the magnetic spin diffusion barrier (Hayter et al., 1974; Cox

et al., 1977) on the build-up of nuclear polarization in space

and time could be clarified by time-resolved polarized neutron

scattering.

APPENDIX A
Approximation for small """

At small scattering angles, the z component of the scattering

vector Q can be neglected (Fig. 3).

BðQÞ ¼
P2

j¼1

Wj exp½iðxjQx þ yjQyÞ�: ð22Þ

Starting from the two assumptions made in x2.1, and setting

W = 1, the amplitude in the vertical y direction (Fig. 5), BV(Q),

is given by

BVðQÞ ¼
P4

j¼1

expðiyjQÞ ¼
P4

j¼1

cosðyjQÞ þ i sinðyjQÞ: ð23Þ

The index runs over the positive and negative values of both

circles defined in x2.1. With y2 = �y1, y4 = �y3 of the two

circles shown in Fig. 5 and |yj| = R, j = 1, 2, 3, 4 (Fig. 5), one

obtains

BVðQÞ ¼ 4 cosðRQÞ: ð24Þ

For the horizontal x direction, the projection of the lengths of

the two dumbbells require x1 = R � d, x2 = �R + d (green in

Fig. 5), x3 = R + d, x4 =�R � d (light green in Fig. 5) and |xj| =

R, j = 1, 2, 3, 4. The corresponding amplitude BH(Q) is given by

BHðQÞ ¼ 2 cos½ðRþ dÞQ� þ 2 cos½ðR� dÞQ�: ð25Þ

The cosines in (24) and (25) are replaced by their expansions

as power series of Q2.

BVðQÞ ¼ 2ð1� 1
2 R2Q2 þ . . .� . . .Þ ð26Þ

BHðQÞ ¼ 2½1� 1
2 ðRþ dÞ2Q2 þ . . .� . . .Þ

þ 2½1� 1
2 ðR� dÞ2Q2 þ . . .� . . .�: ð27Þ

Using the Guinier approximation, one obtains

BVðQÞ ¼ 4 exp½� 1
2 R2Q2� ð28Þ

BHðQÞ ¼ 2 exp½� 1
2 ðRþ dÞ2Q2� þ 2 exp½� 1

2 ðR� dÞ
2
Q2�:

ð29Þ

The amplitude of the atoms of the EHBA-CrV molecule that

are not subject to DNP is given by

AðQÞ ¼ expð� 1
6 R2

qQ2Þ: ð30Þ

Rg is the corresponding radius of gyration.

The difference between the intensity in the horizontal x

direction and that in the vertical y direction is

�IðQÞ ¼ IHðQÞ � IVðQÞ

¼ jAðQÞ þ BHðQÞj
2
� jAðQÞ þ BVðQÞj

2

� Ref½BHðQÞ � BVðQÞ�AðQÞg

¼ 1
2 exp
�Q2ðR2 þ d2Þ

2
þ 1

2 exp
�Q2ðR2 � d2Þ

2

�

� exp
Q2R2

2

�
exp�

Q2R2
g

6
: ð31Þ

As the amplitudes BH(Q) and BV(Q) are much smaller than

A(Q), the absolute squares of B in (31) have been omitted.

APPENDIX B
The analytical expression

We start from the scattering amplitude B(Q, �, �, �, ") as

defined by (11). While an explicit expression for Yl;mð!
0
jÞ has

been given in (18), (17) presents the probability function W in

its standard form, i.e. with the direction of the magnetic field

along the z axis (the direction of the neutron beam). What is

the strength of W at the site of the jth atom after rotation of

the molecule by the Eulerian angles �, �, � in a magnetic field

the direction of which is deviating from that of the neutron

beam by the Eulerian angles "1, "2, "3?

In the first step, W(�) as defined by (17) is rotated by "1, "2,

"3. Using (44), one obtains

Wð!Þ ¼
P

k¼0;2;4

Ck

Pk
n¼�k

Rk;n;0ð"1; "2; "3ÞYk;nð!Þ: ð32Þ

According to (45), the matrix elements Rk,n,0 can be expressed

by spherical harmonics Yk,n.

Wð!Þ ¼
X

k¼0;2;4

Ck

4�

2kþ 1

� �1=2 Xk

n¼�k

Y�k;nð"2; "1ÞYk;nð!Þ: ð33Þ

This is the probability of direct polarization in a magnetic field

which has been rotated by "1, "2 with respect to the direction

of the neutron beam.
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In the next step, we would like to know Wð!0jÞ of the jth

proton which has been rotated by (�, �, �), i.e.

Wð!0jÞ ¼
X

k¼0;2;4

Ck

4�

2kþ 1

� �1=2 Xk

n¼�k

Y�k;nð"2; "1ÞYk;nð!
0
jÞ: ð34Þ

Using (44), one obtains

Wjð�; �; �; "Þ ¼
X

k¼0;2;4

Ck

4�

2kþ 1

� �1=2 Xk

n¼�k

Y�k;nð"2; "1Þ

	
Xk

n0¼�k

Rk;n0;nð�; �; �ÞYk;n0 ð!jÞ: ð35Þ

Inserting (18) and (35) in (11), one obtains the explicit

expression for Bl,m(Q, �, �, �, ").

Bl;mðQ; �; �; �; "Þ

¼ ðiÞ
l
X

j

X
k¼0;2;4

Ck

4�

2kþ 1

� �1=2 Xk

n¼�k

Y�k;nð"2; "1Þ

	
Xk

n0¼�k

Y�k;n0 ð!jÞRk;n0;nð�; �; �Þ

	 jlðQrjÞ
Xl

m0¼�l

Rl;m0;mð�; �; �ÞY
�
l;m0 ð!jÞ: ð36Þ

The product of the matrix elements of the rotation operator

can be contracted to a sum of these. Using (47), one obtains

Bl;mðQ; �; �; �; "Þ

¼ ðiÞl
X

j

X
k¼0;2;4

Ck

4�

2kþ 1

� �1=2

	
Xk

n¼�k

Y�k;nð"2; "1Þ
Xk

n0¼�k

Y�k;n0 ð!jÞjlðQrjÞ

	
Xl

m0¼�l

Y�l;m0 ð!jÞ
Xlþk


¼jl�kj

ð2
þ 1Þ
l k 


m0 n0 p

� �

	
l k 


m n q

� �
R
;p;qð�; �; �Þ: ð37Þ

The intensity of scattering from randomly oriented particles is

obtained by integration over �, �, �. Introducing (37) in (12),

the equation contains the orthogonality relation of the matrix

elements of the rotation operator (46).

1

8�2

Z2�

�¼0

Z�

�¼0

Z2�

�¼0

R
1;p1;q1
ð�; �; �ÞR�
2;p2;q2

ð�; �; �Þ d� sin � d� d�

¼
1

2
þ 1
	
1;
2

	p1;p2
	q1;q2

; ð38Þ

which requires that 
1 = 
2, p1 = p2 and q1 = q2. The average

scattering intensity from close protons as parts of randomly

oriented particles subjected to the angular part of (1) is

IBBðQ; "Þ

¼
X1
l1¼0

X1
l2¼0

il1 ð�iÞ
l2
Xl1þl2

l¼jl1�l2j

Xl

m¼�l

Xl1

m1¼�l1

Xl2

m2¼�l2

ð�1Þmþm2

	
ð2l1 þ 1Þð2l2 þ 1Þð2l þ 1Þ

4�

� �1=2 l1 l2 l

m1 �m2 m

� �

	
l1 l2 l

0 0 0

� � X
k1¼0;2;4

X
k2¼0;2;4

4�Ck1
Ck2

½ð2k1 þ 1Þð2k2 þ 1Þ�1=2

	
Xk1

n1¼�k1

Xk2

n2¼�k2

Y�k1;n1
ð"2; "1ÞYk2;n2

ð"2; "1Þ
X



ð2
þ 1Þ

	
Xk1

n0
1
¼�k1

Xk2

n0
2
¼�k2

Xl1

m0
1
¼�l1

Xl2

m0
2
¼�l2

l1 k1 


m01 n01 p

� �
l1 k1 


m1 n1 q

� �

	
l2 k2 


m02 n02 p

� �
l2 k2 


m2 n2 q

� �

	
X

j1

X
j2

Y�k1;n
0
1
ð!j1
ÞYk2;n2

ð!j2
Þ

	 jl1
ðQrj1
Þjl2
ðQrj2
ÞY�l1;m01

ð!j1
ÞYl2;m

0
2
ð!j2
ÞYl;�mð�Þ: ð39Þ

For 
 two conditions hold: |l1 � k1| 
 
 
 l1 + k1 and

|l2 � k2| 
 
 
 l2 + k2.

APPENDIX C

The following formulae have been used. They can be found for

example in textbooks of electrodynamics or quantum

mechanics and they are given here for the convenience of the

reader.

expðiQ	 rÞ ¼ 4�
P1
l¼0

Pl

m¼�l

iljlðQrÞY�l;mð!ÞYl;mð�Þ: ð40Þ

jl are the spherical Bessel functions. The spherical harmonics

Yl,m form a complete orthogonal set on the surface of a unit

sphere in the two indices l, m. !(�, ’) and �(�, �) are unit

vectors in r and Q space, respectively.

R2�
0

d’
R�
0

sin � d�Y�l0;m0 ð�; ’ÞYl;mð�; ’Þ ¼ 	l0;l	m0;m: ð41Þ

For negative indices m, the following holds:

Yl;�mð!Þ ¼ ð�1ÞmY�l;mð!Þ: ð42Þ

The product of spherical harmonics can be reduced to a sum of

these (rule of contraction):

Yl1;m1
ð!ÞYl2;m2

ð!Þ

¼
Xl1þl2

l¼jl1�l2j

Xl

m¼�l

ð�1Þm
ð2l1 þ 1Þð2l2 þ 1Þð2l þ 1Þ

4�

� �1=2

	
l1 l2 l

0 0 0

� �
l1 l2 l

m1 m2 m

� �
Yl;�mð!Þ: ð43Þ

For the Wigner 3j symbols in brackets ( . . . ), the following

holds: m1 + m2 = m. If m1 = 0 and if m2 = 0, then the value of

the 3j symbol will vanish unless l1 + l2 + l is even.
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The formula for the rotation of spherical harmonics by the

Eulerian angles (�, �, �) is

Yl;mð!
0Þ ¼

Pl

m0¼�l

Rl;m0;mð�; �; �ÞYl;m0 ð!Þ; ð44Þ

where Rl,m0 ,m(�, �, �) are the matrix elements of the rotation

operator. In particular, for m = 0,

Rl;m;0ð�; �; 0Þ ¼
4�

2l þ 1

� �1=2

Y�l;mð�; �Þ: ð45Þ

The orthogonality of the matrix elements of the rotation

operator requires

1

8�2

Z2�

�¼0

Z�

�¼0

Z2�

�¼0

d� sin � d� d� Rl1;m1;n
ð�; �; �ÞR�l2;m2;n2

ð�; �; �Þ

¼
1

2l1 þ 1
	l1;l2

	m1;m2
	n1;n2

: ð46Þ

The product of the matrix elements of the rotation operator

can be contracted to a sum of these:

Rl1;m1;n1
ð�; �; �ÞRl2;m2

;n
2
ð�; �; �Þ

¼
Xl1þl2

l¼jl1�l2j

ð2l þ 1Þ
l1 l2 l

m1 m2 m

� �
l1 l2 l

n1 n2 n

� �

	 Rl;m;nð�; �; �Þ: ð47Þ

The experiments on polarized neutron scattering from

dynamically polarized proton spin targets were carried out at

the instrument D22 of the Institut Laue–Langevin, Grenoble,

France, using the polarized target facility of PSI, Villigen,

Switzerland. The author is indebted to Ben van den Brandt,

Patrick Hautle, Ton Konter, Joachim Kohlbrecher and Salva-

tore Mango from PSI, Villigen, Switzerland, Hans Glättli

(CEA/LLB, Saclay, France), Edouard Leymarie (CNRS,

Villefranche, France), Roland May, Isabel Grillo and Oliver

Zimmer from ILL, Grenoble, France, who as a team made the

experiments possible. The author would also like to thank

Hans Glättli and Tapio Niinikoski (CERN, Geneva, Switzer-

land) for their helpful comments on this paper.
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